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Abstract

Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of
protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions
appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by
suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and
network properties. Our score based on triplets is shown to complement existing techniques for predicting protein
interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score
highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet
score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of
interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon
the accuracy of prediction and find that the interactions from the same kingdom give better results than from across
kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that
network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set
and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/
bioinfo/resources/PredictingInteractions.
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Introduction

For understanding the complex activities within an organism, a

complete and error-free network of protein interactions which

occur in the organism would be a significant step forward.

Experimentally, protein interactions can be detected by a number

of techniques, and the data is publicly available from several

databases such as DIP, Database of Interacting Proteins [1], and

MIPS, Munich Information Center for Protein Sequences [2].

Unfortunately, these experimentally detected interactions show

high false negative [3] and high false positive rates [4,5]. In this

paper we develop a new computational approach to predict

interactions and validate experimental data.

Computational methods have already been developed for these

purposes. For interaction validation, these have mainly centered

on the use of expression data [5,6] or the co-functionality or co-

localisation of the proteins involved [7,8].

For prediction of protein interactions in contrast, many methods

have been suggested. The majority of these generate lists of

proteins with a functional relationship rather than physical

interactions [9,10].

In terms of physical interaction prediction the available methods

can be typified by the two approaches of Deng et al. [11] and

Jonsson et al. [12].

In Deng et al.’s method, a domain interaction based approach,

a protein interaction is inferred on the basis of domain contacts. If

a domain pair is frequently found in observed protein interactions,

it is likely that other protein pairs containing this domain pair

might also interact. From the observed protein interaction

network, the probabilities of domain-domain interactions are

estimated. The expectation-maximum algorithm is employed to

compute maximum likelihood estimates, assuming that protein

interactions occur independently of each other. This likelihood is

then used to construct a probability score for a protein pair to

interact, it is inferred based on the estimated probabilities of

domain interactions within the protein pair. Deng et al.’s

prediction is based on a total of 5,719 interactions from S.cerevisiae.

However, the limited number of known domains may well not be

enough to describe the variety of protein interactions. This

approach has had further extensions, such as an improved scoring

for domain interactions [13] and the inclusion of other biological

information [14]. Liu et al.’s model [15] is an extension of Deng et

al.’s method which integrates multiple organisms. In addition to

S.cerevisiae, two other organisms, C.elegans, D.melanogaster, are

included.

The second type of approach, as used by Jonsson et al. [12], is

homology-based. It searches for interlogs among protein interac-

tions from other organisms. If an interlog of a protein interaction

exists in many other organisms, this protein interaction will score

highly. In addition to searching for orthologous interlogs, Mika

and Saeed [16,17] suggest that paralogous interlogs may provide

even more information for inferring interacting protein pairs.

In principle, statistical clustering algorithms such as [18] and

[19] which identify cliques in the network could be viewed as a
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prediction method, predicting that all proteins within a clique

interact with each other. This interpretation is biologically

questionable, and as the focus in the statistical clustering approach

is on locating cliques and overlapping modules rather than on

predicting individual interactions, we exclude it from our

comparisons.

Neither Deng et al.’s method nor Jonsson et al.’s method make

use of network structure beyond pairwise interactions; interactions

are considered as isolated pairs. However these pairs could and

should be considered as a network, where the proteins are nodes

and their interactions are links [20,21]. Topological examination

of these networks has revealed many interesting properties,

including a clustering tendency [22,23], see also Supporting

Information (Text S1, Table S1). In our method we exploit the

network structure by developing a score which considers triadic

patterns of interactions rather than pairs. In this paper we thus

take the established idea that the characteristics of a protein (i.e.,

its structure, function and location) will affect its interactions (see

for example [7,21,24–31]) alongside the not yet fully explored idea

that its network position will also affect its interactions, in order to

develop a novel predictive tool.

Our goal is to predict (undirected) protein interactions of the

type x with y, where both x and y interact with a third protein z.

Therefore in our approach we particularly focus on two simple

three node network structures, triangles and lines. A triangle is a

subnet formed by an interacting protein pair with a common

neighbour. A line, by contrast, is a subnet formed by an non-

interacting protein pair with a common neighbour. We will show

that these network structures and the protein characteristics within

them help to predict protein interactions.

We apply our method to the S.cerevisiae interaction network from

the DIP database. During the validation we assume that function

and structure are known for all proteins (fully annotated) and that

the protein interaction network is known for all but one

interaction. With triadic interacting patterns, we predict the

interaction status of those protein pairs with at least one common

neighbour and compare our results with those from three other

published scores. We go on to demonstrate that the requirement to

have fully annotated proteins can be relaxed to include partially

annotated proteins, with a slight drop in the accuracy. The

prediction is also compared with simulated networks where all

proteins are shuffled while the network structure is maintained, in

order to examine whether the specific network structure, triangles

and lines, keep useful information in forming protein interaction

networks.

To measure the true positive rate in a set of protein pairs, Deane

et al [5] proposed the expression profile index (EPR), a measure of

the true positive rate in a set of protein pairs based on biological

relevance. We compare the EPR index to our score, showing that,

with a suitable cut-off, our predictions achieve a high true positive

rate. We also give examples of validated experimental data and

predict new interactions.

Our predictive model uses a prior interaction database and for

this we use three prior databases, pooling protein interactions

collected from prokaryotes, eukaryotes and all interactions. The

results from using different prior databases show that the use of

interactions from within the same kingdom rather than across

kingdoms significantly improves the results, indicating as in [21]

that interaction networks may be significantly different between

the kingdoms.

Comparing our method to three other standard approaches,

namely the domain-based approach by Deng et al. and an extension

by Liu et al., and a homology-based approach by Jonsson et al., we

find that our method outperforms the above approaches on the

subset of interactions in the DIP Yeast data set which contains

enough annotation and connectivity to be included in our analysis.

Our method complements the methods by Deng et al. and Liu et al.,

as their approaches apply to a rather different subset of potential

interactions yielded from the DIP Yeast data set.

Materials and Methods

Protein Interaction Networks
Experimental protein interactions of S.cerevisiae, excluding self-

interactions, are obtained from DIP (DIP Yeast). Self-interactions

(,3% of all interactions) are excluded, implying that all triangles

and lines are constructed of three different proteins. Three

different prior data bases are constructed by pooling interactions

considering eukaryotes (D.melanogaster, C.elegans, S.cerevisiae, M.mus-

culus, H.sapiens), prokaryotes (E.coli and H.pylori), or all interactions;

the interaction we would like to predict or to validate is always

excluded.

Classifications of Structure and Function
The proteins in our dataset are classified into the seven SCOP

classes [32] using the SUPERFAMILY database [33], see

Supporting Information (Text S1, Table S3). Between 61 to

89% of proteins are classified, dependent on organism. In our

analysis, a protein is found to be assigned to 1.3 classes on average.

We use the 24 functional groups from the secondary level of

Molecular Function in the Gene Ontology [34], see Supporting

Information (Text S1, Table S4) as our protein functional

categorisation. Molecular Function ontology in GO has 188

secondary level categories, excluding the categories ‘‘obsolete’’ and

‘‘unknown’’. The 24 groups used are those that are most frequently

observed. An annotated protein may be assigned to several nodes in

GO, which can be traced back to one or multiple nodes.

The Upcast Sets of Characteristic Triplets
The protein interaction network is used to build an upcast set of

triplets of characteristic vectors as in Figure 1; see also [21]. Here,

A, B, C and D denote protein characteristics, whereas different

Author Summary

For understanding the complex activities within an
organism, a complete and error-free network of protein
interactions which occur in the organism would be a
significant step forward. The large amount of experimen-
tally derived data now available has provided us with a
chance to study the complicated behaviour of protein
interactions. The power of such studies, however, has been
limited due to the high false positive and false negative
rates in the datasets. We propose a network-based
method, taking advantage of the tendency of clustering
in protein interaction networks, to validate experimental
data and to predict unknown interactions. The integration
of multiple protein characteristics (i.e., structure, function,
etc.) allows our predictive method to significantly outper-
form two other approaches based on homology and
protein-domain relationships on datasets which contain a
large amount of interactions, but not much detailed
information on the proteins involved in the interactions. In
addition, our predictive score based on triadic interaction
patterns improves over a pair-wise approach, suggesting
the importance of network structure. Moreover, using
pooled interactions as prior information, we find evidence
for fundamental differences in protein interaction net-
works between eukaryotes and prokaryotes.

Predicting and Validating Protein Interactions
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shapes indicate different proteins. A protein may possess more

than one characteristic. Our triplets are triangles and lines of three

characteristic vectors according to their interacting patterns. A

characteristic line is a specific pattern constructed by three vectors

with two vector interactions among them. A characteristic triangle

is formed by three vectors interacting with each other.

Here we abuse the English language; while it would be clearer

to say ‘‘pair of characteristics’’ and ‘‘triangle of characteristics’’ we

prefer the shorter version ‘‘characteristic pair’’ and ‘‘characteristic

triangle’’ for easier reading.

The Upcast Sets of Characteristic Pairs
To assess our method we also compare it with a score based on

characteristic pairs only. In a similar manner to the upcast set of

characteristic triplets, we construct an upcast set of characteristic

pairs. Here we grasp the opportunity to introduce some notation.

For a protein x, its characteristic vector Sc (x) contains all its

characteristics of a certain type (e.g., structure, function), and S(x)

denotes the set of vectors formed using different characteristics. In

the case of two protein characteristics, S1 (x) and S2 (x) are the two

respective vectors, and S(x) is the set

S xð Þ~ s1,s2½ � s1[S1 xð Þj ,s2[S2 xð Þf g:

We shall denote the set of all characteristic vectors for all

proteins by S; this set may contain a vector va multiple times.

A characteristic pair is constructed by two characteristic vectors

from two interacting proteins. If two proteins x and y interact, for

each pair {na, nb} with na M S(x), nb M S(y), we write na,nb. If two

protein do not interact, the relation between two vectors is denoted

by ua/ub. The upcast set of characteristic pairs is then the

collection of all characteristic pairs extracted from the protein

interaction network, which may stem from one or from multiple

organisms.

Eligible Interactions
For our upcast sets to be informative for a protein interaction,

an eligible protein pair has to satisfy two conditions: Firstly, the

proteins need to have at least one common interacting neighbour;

Protein interaction 
network

A

B

D
A C

Upcast set of characteristic triangles and lines

Upcast set of characteristic pairs

A B

A B

A D

B D

B C

C D

A

B

D

C
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D

A
B

A

A
B

C

A
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Figure 1. Upcast Sets of Characteristic Pairs and Triplets. In this example, we consider only a single characteristic (e.g., protein function), so
that the characteristic vector for a protein is a 1-vector. There are three single-category proteins and one two-category protein in the protein
interaction network (left), which result in an upcast set of six characteristic pairs {A–B, A–B, A–D, B–D, B–C, C–D}. Alternatively, the upcast set of triplets
includes two triangles and three lines.
doi:10.1371/journal.pcbi.1000118.g001
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and secondly, the query protein pair and the neighbours have to

be at least partially annotated.

Among 4,931 proteins in the observed interaction network,

2,416 (49%) proteins are fully annotated with both characteristics

(structure and function) and 3,808 (77%) are annotated with at

least one characteristic.

Table 1 gives the number of eligible protein pairs in the Yeast

protein interaction network. There are about 90,000 eligible fully

annotated proteins pairs and around 3% of them are in the

experimental data (DIP Yeast). When partially annotated proteins

are included, the number of eligible protein pairs is increased by

158%.

The Triangle Rate Score
We derive our triangle rate score from the upcast sets of

characteristic triplets. This score thus includes information not

only from the query protein pair but also from its neighbours.

Therefore, it is a network-based score which goes beyond pairwise

interactions.

Within the triplet interactions, we assess the odds to observe

triangles versus lines around the query protein pair. More

formally, let txy be the total frequency of all characteristic triangles

around the query protein pair {x,y}; denoting by z M B(x,y) the set

of all common neighbours of x and y in the protein interaction

network,

txy~
X

z[B x,yð Þ

X
va[S xð Þ,vb[S yð Þ,vc[S zð Þ

f va*vc*vb*vað Þ

2
4

3
5,

Where f (na,nc,nb,na) is the frequency of triangle

{na,nc,nb,na} among all characteristic triangles in the prior

data base. Similarly, lxy is the total frequency of all characteristic

lines around the query protein pair {x, y}. We define the triangle rate

score, tri(x,y) for the protein pair {x, y}. as the odds of observing

triangles versus lines among triangles and lines in its neighbour-

hood,

tri x,yð Þ~ txy

txyzlxy

: ð1Þ

Heuristically, the higher the triangle rate score is, the higher the

chance one would observe an interaction between the query

protein pair.

When multiple characteristics are simultaneously included, the

triangle rate score defined above requires the query protein pair

and the common neighbour to be fully annotated with multiple

characteristics. However, there are many partially annotated

proteins in the neighbourhood which may provide useful

information. These proteins are particularly important when only

a few fully annotated ones are available. In Supporting

Information (Text S1, C), an extended version of the triangle rate

score is provided to include partially annotated proteins.

The Pair-Based Score
To assess whether the triangle rate score significantly improves

prediction and validation, we also construct a similar score based

on pairwise interactions only, which we call the pair-based score. The

details are as follows.

Based on the pairwise interactions, we also provide an odds

ratio-based score, see also [23] for details, which gives a measure

of the relative count of the characteristic pair found between

positive and negative protein interactions. We call an interaction

‘‘positive’’, if it is contained in the database. All potential

interactions which are not found in the database are called

‘‘negative’’. This score can be viewed as a likelihood for a model

which assumes that

1. The number of proteins in each type of characteristic vector is

multinomially distributed.

2. Given the total number of characteristic pairs which can be

derived from the frequency of characteristic vectors, the

number of actual interactions for each type of characteristic

pair {na, nb} is binomially distributed, with the probability of

success pab being the probability of interaction between the

proteins in the pair, and these binomial random variables are

independent.

Given a specific characteristic pair {na, nb}, under the

multinomial-binomial model above the maximum likelihood

estimate for pab is given by

p̂pab~
oab

oabznab

,

where oab is the number of times an interaction has been observed

for the characteristic pair {na, nb}, and nab is the number of times

that no interaction was observed for the pair {na, nb}.

With this heuristic we define the pair-based score for a query

protein pair {x, y} as

pair x,yð Þ~
X

va[S xð Þ,vb[S yð Þ

p̂pab

S xð Þj j S yð Þj j : ð2Þ

Thus pair(x,y) is the average of the estimated probabilities p̂ab for all

characteristic pairs generated by the query protein pair in the prior

data base. Heuristically, the higher the score, the more likely it

should be that the two query proteins interact. An extended

version of the score is able to cover protein pairs which are only

partially annotated, see Supporting Information (Text S1, C).

We note that the triangle rate score and the pair-based score

have a slightly different form. While the pair score is the average of

all relative frequencies of characteristic pairs, the triangle rate

score is the summed frequency of the characteristic triangles over

triangles and lines. The different setting here was chosen because

around a query protein pair many characteristic triangles might

hardly be seen in the observed networks; their counts are too small

Table 1. The Size of Predictable Protein Pairs in Yeast.

DIP Yeast network Proteins Interactions (Percentage)

Observed network 4,931 17,471

fully annotated (F) 2,416 6,537 (37%)

fully and partially annotated (F+P) 3,808 13,102 (75%)

Eligible protein pairs (F){ 87,181

observed interactions 2,896 (3%)

unobserved interactions 84,285 (97%)

Eligible protein pairs (F+P){ 224,631

observed interactions 6,252 (3%)

unobserved interactions 224,631 (97%)

{proteins annotated with both characteristics (structure and function).
{proteins annotated with at least one characteristic.
doi:10.1371/journal.pcbi.1000118.t001
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to be useful. This phenomenon is much less pronounced for the

pair patterns, there being rather more triangle patterns than pair

patterns; see Supporting Information (Text S1, Table S2) for the

number of observed patterns against all possible patterns.

The Receiver Operating Characteristic (ROC) Curve
In order to put our scores to work we choose a threshold; all

pairs with scores above that threshold would be classified as

interacting, while all pairs below that threshold would be classified

as non-interacting. The choice of threshold depends on the desired

sensitivity and specificity; recall that the sensitivity is the ratio of true

positives over (true positives+false negatives) and the specificity is the

ratio of true negatives over (true negatives+false positives). To

assess our scores we first use a Receiver Operating Characteristic

(ROC) curve, which is a useful technique for examining the

performance of a classifier [35]; in our case the classes are

‘‘interacting’’ or ‘‘non-interacting’’ for a pair of proteins. The

curve plots sensitivity against (1 minus specificity). Each point on a

ROC curve is generated by selecting a score threshold for a

method. We move the cutoff along the range of the score and

record different sensitivities and specificities of a method. The

closer the curve is to the upper left hand corner (i.e., the larger the

area under curve), indicating that sensitivity and specificity are

both high, the better the predictive score.

Validation procedure. While we are never completely

certain that a prediction is correct, we assume that a positive

prediction is correct if it is contained in our gold-standard positive

(GSP) set, and that a negative prediction is correct if it is contained

in our gold-standard negative (GSN) set. The GSP set is based on

8,250 hand-curated interactions in MIPS complexes catalog [2,7].

These positive interactions are identified if two proteins are within

the same complex and if the interactions are confirmed by various

experimental techniques. The GSP we use is the overlapping

protein pairs between our eligible protein pairs described in

Table 1 and MIPS complexes catalog. For the comparison

between methods we use the overlap between the eligible protein

pairs for the respective methods, and the gold standard MIPS set.

The set of gold-standard negatives (GSN) are random protein

pairs which neither share protein localisation, nor expression nor

homologous interaction data [17].

We have many more gold-standard negatives than positives.

The unequal sizes of gold-standard sets may affect the ROC curve;

when the cutoff is high, too many gold-standard negatives would

cause a rapid increase in true negatives, which would result in

artificially high specificity. To avoid this bias, we collect 300

samples of randomly selected pairs from the extensive GSN. Each

sample is the same size as our GSP set. Predictions are verified

against these 300 reference sets obtained by combining the GSP

set and the sample from the GSN set.

Testing difference between two ROC curves. In order to

differentiate the ROC curves of the different predictors we have

developed a method to compare the areas under two curves (AUC)

[35,36] through the statistical z-test for differences. Since the AUC

is limited by a unit square, its value will be between 0 and 1.0.

While there is a possibility for a correlation between the AUC of

two samples, randomly generating 1,000 samples of two sets of 30

random samples from the set of 300 AUC values, no significant

covariance was detected for any of the scores under consideration.

Hence assuming that our 300 samples are approximately

independent, from the Central Limit Theorem the average

AUC should be approximately normally distributed. Therefore

here we used a z-test to compare the mean difference between the

300 AUC from two scores. If the difference between two mean

AUC is too large then we reject the null hypothesis that two AUC

are equal and conclude that there is evidence that one ROC curve

is significantly better than the other one. Here we not only use tests

at 5% significance level; but we also give the p-values of the tests.

For details of the z-test see Supporting Information (Text S1, D).

The Precision-Recall Operating Characteristic (P-ROC)
Curve

When evaluating performance for a classifier when the test data

is unbalanced, such as when there is a disproportionate number of

negative versus positive cases, instead of choosing subsamples of

the same size as for our tests between two ROC curves, the

Precision-Recall Operating Characteristic (P-ROC) curve pro-

vides an alternative. The precision is the ratio of true positives over

(true positives+false positives), whereas the recall is the ratio of true

positives over (true positives+false negatives), i.e. the sensitivity.

The P-ROC curve plots recall against precision. While there is a

tendency for recall and precision to be inversely related, Precision-

Recall curves are not necessarily decreasing. An increasing P-

ROC curve is an indication for perverse retrieval, in which there is a

strong tendency that first the negative interactions are retrieved;

only when there are so few of those left that it is almost

unavoidable to retrieve positive interactions, these are also

covered; see for example [37] for an exposition.

Results/Discussion

Initially we compare our method to the methods suggested by

Deng et al. [11], Liu et al. [15], and Jonsson et al. [12], we then

compare it to our pair-based variant. All these comparisons are

carried out using a leave-one-out cross validation approach where

one eligible protein pair is excluded from the Yeast network prior

database. Finally we establish the power of the method when

partially annotated proteins are included in the process.

Comparison with Other Published Methods
We compare our triangle rate score with three other methods,

the two by Deng et al. [11] and Liu et al. [15] being domain-

based, and the one Jonsson et al. [12] being homology-based. The

two scores by Deng et al. and Liu et al. are downloaded directly

from the authors’ webpages. Deng et al.’s method predicted

125,435 protein pairs. After removal of 5,717 interactions, which

are the training data in forming the scores, and translating the

gene names to ORF names (to match the reference sets), 63,013

protein pairs remained. Liu et al.’s method predicted 20,088

protein pairs. After the translation of names, 15,608 protein pairs

remained. Our triangle rate score predicts 87,181 protein pairs.

The number of predicted pairs using the different methods on the

DIP 20060402 data set described above, and the overlap with our

pairs, given in Table 2, illustrates that our method and Deng et al.

and Liu et al.’s methods complement each other, as they operate

on fairly disjoint sets. In contrast, there is a substantial overlap

Table 2. Eligible Protein Interactions for Different Methods.

Method No. eligible pairs
Overlap with eligible
triangle rate score pairs

Deng et al.’s score 63,013 2,950

Liu et al.’s score 15,608 746

Jonsson et al.’s score 59,039 38,231

doi:10.1371/journal.pcbi.1000118.t002

Predicting and Validating Protein Interactions
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between the eligible pairs for Jonsson et al.’s score and for the

triangle score.

Jonsson et al.’s method is implemented in two ways, using

orthologs only (a pooled database of 6 organisms, E. coli, H. pylori,

C. elegans, D. melanogaster, M. musculus and H.sapiens from DIP for the

search of similar sequences), and additionally using orthologs and

paralogs (see Figure 2 and Table 3). In the second case the S.

cerevisiae interactions in DIP are also included.

The comparison of scores are shown in Figure 2. The areas

under the ROC curve were tested for significant difference; see

Table 3. The results of the z-tests show that our triangle rate score

outperforms both the domain-based (second place) and homology-

based scores, see Table 4 for p-values. Here the comparison with

the domain-based methods has to be taken with a pinch of salt, as

the amount of overlap between the eligible pairs for those methods

and our method is very small.

The P-ROC curve in Figure 3 for the comparison between the

different methods shows not only that the triangle rate score

outperforms the other methods on our data set, but it also reveals

that Deng et al.’s score and Liu et al.’s score have marked jumps in

recall. The overlap with our data set is so small that these jumps

may be artefacts.

The number of predictions which overlap with the MIPS-GSP

(8,250 interactions) is also an indicator of coverage. Our triangle

rate score is able to predict 928 of them, which is the largest

number of predictions from any of the four sets. Deng et al. and

Liu et al.’s scores, based on protein-domain relationships, can only

predict 85 and 174 interactions in GSP respectively. Their

methods cannot predict protein pairs without domain information,

limiting their coverage. Liu et al.’s score, when including

information from other organisms, improves the coverage over

Deng et al.’s score, but not the overall performance in terms of

AUC. Jonsson et al.’s score covers more interactions in GSP (390

interactions) than the domain interaction based approaches,

however, it appears to perform worse in terms of AUC, though

not significantly. Jonsson et al.’s method is still limited in coverage,

however, because only sequences with very high similarity are

useful for transferring interactions, and often qualified homologs

are not available, see [16].
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Figure 2. ROC Curves of Predictive Scores. The ROC curves, 1
minus specificity vs. sensitivity, for predicting yeast protein interactions
using domain interaction based approaches (Deng et al.’s score and Liu
et al.’s score), a homology-based approach (Jonsson et al.’s score plus
paralogs) and our network-based approach (the triangle rate score).
doi:10.1371/journal.pcbi.1000118.g002

Table 3. Areas under ROC Curves for Scores Comparison.

Predictive scores Mean (x̄ )
Sample standard
deviation (sx̄)

The pair-based score 0.841 0.0066

The triangle rate score 0.893 0.0058

Deng et al.’s score 0.757 0.0191

Liu et al.’s score 0.705 0.0228

Jonsson et al.’s score 0.677 0.0135

Jonsson et al.’s score (inc. paralogs) 0.712 0.0084

doi:10.1371/journal.pcbi.1000118.t003

Table 4. Z-tests for AUC Comparison among Predictive
Scores.

Predictive scores P T D L J JP

The pair-based score (P) * * * * *

The triangle rate score (T) * * * *

Deng et al.’s score (D) 0.079 * 0.031

Liu et al.’s score (L) 0.281 0.770

Jonsson et al.’s score (J) 0.025

Jonsson et al.’s score (inc. paralogs)
(JP)

*: z-score.3.29, i.e., p-value,0.001.
doi:10.1371/journal.pcbi.1000118.t004
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Comparison between the Triangle Rate Score and the
Pair-Based Score

We also compare our triangle rate score to the pair-based score,

thus allowing us to ascertain the effect of network structure on our

scoring method. The ROC curves in Figure 4 show that the

triangle rate score outperforms its pair-based analog, thus

demonstrating that the inclusion of network information beyond

pairwise interactions significantly improves prediction. The success

of the triangle rate score indicates the importance of network

structure (triangles and lines) in conjunction with protein

characteristics for the understanding of protein interactions.

We have also employed a logistic regression model to include

pair- and triplet-based statistics, see Supporting Information (Text

S1, E) for details. As the preliminary investigation did not show

significant improvement over the simple triangle rate score and the

full scale leave-one-out validation would be very computation-

expensive we did not pursue this model further.

The Performance of the Triangle Rate Score
The triangle rate score can be used to validate experimentally

derived interactions. It is estimated that the false positive rates for

high-throughput experiments vary from 35 to 83% dependent on

source [3].

At a cut-off score value of 0.09, our prediction reaches 0.83 for

both sensitivity and the specificity. Of the 2,896 DIP Yeast

interactions tested by the triangle rate score, 1,732 (60%) are

validated at the score cut off of 0.09. This gives an estimated false

positive rate of around 40%, close to that given by EPR [5].

We also calculate the EPR index (% correct) for subsets of our

predictions. Figure 5 shows how the EPR index increases with

higher ranked prediction sets. As our score cut-off is increased, the

EPR index indicates that the quality of our predictions is

increasing. The set of the top 14% predictions (,12,200

interactions) shows a higher EPR than the experimentally derived

interactions in DIP Yeast.

The EPR index estimates the biologically relevant fraction of

protein interactions detected in a high throughput screen. As the

EPR index is between 70–80% for DIP CORE, we cannot hope

for a correct prediction rate (fraction of true predictions over true

positives) higher than 70–80%. Indeed this upper limit is reflected

by a sharp drop-off in the ROC curve (Figure 2) for (1- specificity)

between 0.2 and 0.3, i.e. specificity between 0.7 and 0.8.

A second way to assess the accuracy of our predicted set is to

consider the overlap between our positive predictions and DIP

CORE. DIP CORE includes 5,969 high-confidence interactions

determined by one or more small scale experiments. As shown in

Figure 6, the percentage of overlap increases with increasing score
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cut-off values. Both these tests demonstrate that the triangle rate

score is a good indicator of interaction prediction quality.

Prediction of new interactions using the triangle rate

score. To assess how our triangle rate score predicts in practice,

we look at the 652 protein pairs with high triangle rate scores (the

top 1%; ,871 pairs) that are not observed in DIP Yeast. Among

these pairs, about 80% are co-localised and 60% share the same

function. Indeed, half of them share both function and subcellular

location. These findings indicate that such highly scoring protein

pairs are likely interactors.

Among five randomly chosen pairs, two were confirmed by

manually checking other public protein databases such as

BioGRID [38] and YPD [39], and literature databases such as

Pubmed. These two cases are described below.

The two proteins ‘‘ATP synthase subunit 4’’ (YPL078C) and

‘‘ATP synthase subunit epsilon’’ (YPL271W) are both in the DIP

database, but DIP does not record an interaction between them.

The pair receives a very high triangle rate score, suggesting a

possible interaction. From BioGRID and Pubmed, we find that

their interaction is confirmed in a co-purification experiment and

in the literature [40]. These two proteins are part of units for

mitochondrial ATP synthesis and they both belong to a large

evolutionarily conserved enzyme complex.

Our second example is the pair ‘‘Transcription initiation factor

TFIID subunit 1’’ (YGR274C) and ‘‘Transcription initiation

factor IIA small subunit’’ (YKL058W), which also has a high

triangle rate score. Both share transcriptional activation as on of

their functions; their positive interaction can be verified in the

literature in [41] and BioGRID.

Validation of experimental interactions using the triangle

rate score. We can also consider the converse, using the

triangle rate score to validate a stated interaction, with the aim to

identify potentially false positives. We examined our lowest scoring

5% (4,355 protein pairs); 49 of which are found in DIP Yeast.

Among these 49 pairs, 42 do not share the same function. There

are 11 pairs that share neither function nor subcellular location.

One example is the interaction between ‘‘Protein TEM1’’ (TEM1)

and ‘‘Long-chain-fatty-acid–CoA ligase 4’’ (FAA4). The database

entry is based on Yeast two-hybrid experiments, a particularly

error-prone experimental technique. While TEM1 is located in

cytoskeleton, endoplasmic reticulum, or punctate composite,

FAA4 is in cytoplasm. In terms of functional categories, TEM1

involves in nucleotide binding and in hydrolase activity, and FAA4

is in long-chain-fatty-acid-CoA ligase activity. These two proteins

are located differently and share no common function, raising a

question mark on whether they indeed interact. False positive

interactions could arise from several reasons, such as

autoactivation of reporter transcription by the bait protein alone.

We suggest that a small-scale experiment should be carried out on

this specific protein pair.

A list of the high scoring protein pairs which are not in DIP and a

list of low scoring pairs which are in DIP are provided in

Supplementary Information Dataset S1 and Dataset S2, respectively.

Including Partially Annotated Proteins
The triangle rate score can be extended to gather information

from partially annotated proteins; see Supporting Information

(Text S1, C). The inclusion of partially annotated proteins allows

more protein pairs to be predicted and more neighbours to be

included. Here we compare the prediction using only fully

annotated proteins and all (fully and partially annotated) proteins.

The accuracy is the fraction of correct prediction out of all

predictions against each of the 300 reference sets. Again, the 300

reference sets are employed to avoid the bias raised from too many

negative pairs, i.e. a high accuracy may arise simply from making

no positive prediction.

Figure 7 shows the accuracy and the coverage using fully or

partially annotated proteins. The inclusion of partially annotated

proteins considerably improves the coverage by 158% with an

accuracy of 77% (only a drop of 5% from using fully annotated

proteins).

Using Different Prior Data Bases
To explore how different priors affect the prediction, we group

protein interactions into prokaryotes, including E.coli and H.pylori,

and eukaryotes, including C.elegans, S.cerevisiae, D.melanogaster,

M.musculus and H.sapiens, and a final global pooled dataset

including all interactions. As a random background, we also

generate a simulated interaction network by shuffling the

annotation of proteins in the Yeast protein interaction network.

Based on the five prior data bases - Yeast, eukaryotes, prokaryotes,

all interactions, and a shuffled protein network, we predict protein

interactions using the triangle rate score. The AUC for all curves

are calculated and tested for differences, see Table 5 and Text S1

and Table S5).
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Table 5. AUC Based on Different Priors.

Predictive scores Mean (x̄ ) Sample standard deviation (sx̄)

Yeast 0.893 0.0058

Eukaryotes 0.874 0.0066

Prokaryotes 0.492 0.0119

All interactions 0.863 0.0067

Shuffled protein network 0.467 0.0088

doi:10.1371/journal.pcbi.1000118.t005
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The ROC curves show that the prior from Yeast itself gives the

best prediction, followed by that from eukaryotes before third, all

interactions; see Figure 8. The prior from prokaryotes gives almost

no useful information, suggesting a fundamental difference of

protein interaction networks between the two kingdoms. The

difference between Yeast and eukaryotes probably arises because

Yeast already has a large amount of interaction data, so that the

inclusion of data from other similar organisms does not improve

prediction. A less well studied organism however may benefit from

a larger prior constructed from other close organisms. It is also not

a surprise that the prior from eukaryotes performs slightly better,

though not significantly, than the prior from all interactions, as the

interactions from eukaryotes form the majority of interactions in

the pool.

The clearly different ROC curves from the eukaryotes prior and

the prokaryotes prior suggest that their networks are very different,

in terms of the interaction patterns of protein characteristics. We

perform a x2 test of homogeneity for triangles and lines in the two

prior data bases. We compare characteristic triangles and lines

that are annotated with structure, function and both, and group

patterns with counts of at least 5. All 6 tests suggest a significant

difference between eukaryotes and prokaryotes. This difference

might arise from evolution and suggests that only priors from close

organisms (within same kingdom) are helpful. It is not always

beneficial to construct a large data base without taking the

difference among organisms into account.

The ROC curves for predicting interactions from shuffled

protein network are close to diagonal, as is expected. Without the

information from protein structure and function and the

interacting patterns, the prediction is random. The different

trends between using real data and simulated data show that the

interacting patterns of protein structure and function play

important roles in protein interactions.

The P-ROC curve in Figure 9 shows a similar pattern in

performance for the priors Yeast, eukaryotes, and all interactions,

but it also reveals that taking prokaryotes as prior is worse than

random shuffling. The figure shows that prokaryotes as prior could

lead to perverse retrieval.

The different performance of prokaryotic and eukaryotic priors

relates to their networks being rather different with respect to their

distributions of protein structure and also of protein function. The

most striking difference relates to small proteins. While 15% of

eukaryote proteins are small proteins, less than 1% of prokaryote

proteins are small proteins. Among the 10 most frequently

observed structure category interactions, in eukaryote 3 of them

(23% of all category interactions) involve small proteins, while in

the list of top 10 structure category interactions in prokaryotes

small protein related interactions do not appear. Another

considerable difference concerns the distributions of the two

functions ‘‘RNA polymerase II transcription factor activity’’ and

‘‘GTPase regulator activity’’. While 4% of the eukaryotic proteins

possess one of these two functions, they are not found in the

prokaryotic proteins. In addition, in the list of top 10 most

frequently observed function category interactions, in eukaryotic

networks we observe many function category interactions with

‘‘protein binding’’ proteins, while they do not appear on the list of

prokaryotes networks.

Conclusion
With the triangle rate score we provide a novel statistical tool for

prediction and validation of protein interactions. Our method uses

triadic-level statistics, in addition to the traditional dyadic-level

statistics arising pairwise interactions. This network-based method

is shown to complement the existing domain-based approach, and

to outperform the homology-based methods as well as a

comparable pair-based method.

As our method requires annotated proteins occurring interact-

ing with at least two other proteins, currently the only data set

which is large enough to warrant application is that of Yeast, see G

in Text S1 and also see Table S6; we anticipate that once more

data will become available for many other organisms, our method

will be useful in these organisms also.

Combining our method with priors from other organisms allows

us to compare protein interaction behaviour among kingdoms,

from the viewpoint of comparative interactomics. The significant
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difference in protein interactions networks between eukaryotes and

prokaryotes serves not only as a caution to integrate interaction

information from only close organisms, but also as encouragement

for further, micro-level study between the two upcast sets, hoping

for more insight into the biological difference between two

kingdoms.
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